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ABSTRACT 

The main objective of this paper is to design and 

implement the VLSI architecture for Mixed Radix FFT. 

This architecture is proposed for memory based Fast 

Fourier transform (FFT) to support less memory size 

and area reduction .The pipelined architecture would 

cost more area and power than memory based 

architecture. 

Index terms: Continuous data flow, Radix-2 Fast Fourier 

transform, Radix-4 Fast Fourier transform, mixed radix 

FFT. 

 1. INTRODUCTION 

        Digital signal processing is one of the core 

technologies, in rapidly growing application areas, such as 

wireless communications, audio and video processing and 

industrial control.. DSP has become a key component, in 

many of the consumer, communications, medical and 

industrial products which implement the signal processing 

using microprocessors, Field Programmable Gate Arrays 

(FPGAs), Custom ICs etc. 

          DSP techniques have been very successful because of 

the development of low-cost software and hardware support. 

For example, modems and speech recognition can be less 

expensive using DSP techniques. DSP processors are 

concerned primarily with real-time signal processing. 

          Fast Fourier transform (FFT) has an important role in 

many digital signal processing (DSP) systems. E.g., in 

orthogonal frequency division multiplexing (OFMD) 

communication systems, FFT and inverse FFT are needed. 

The OFMD technique has become a widely adopted in 

several wireless communication standards.  

          Today, various FFT processors, such as pipelined or 

memory-based architectures, have been proposed for 

different applications. However, for long-size FFT 

processors, such as the 2048-point FFT, the pipelined 

architecture would cost more area and power than the 

memory-based design. Hence, memory based approach has  

 

 

 

 

 

gained more and more attention recently in FFT processor 

designs for long-size DFT applications. 

           For the memory-based processor design, minimizing 

the necessary memory size is effective for area reduction 

since the memory costs a significant part of the processor. 

On the other hand, the FFT processor usually adopts on-chip 

static random access memory (SRAM) instead of external 

memory. The reason is the high-voltage I/O and the large 

capacitance in the printer-circuit-board (PCB) trace would 

increase power consumption for external memory. 

 To minimize the necessary memory size, an in-

place approach is taken for both butterflies output and I/O 

data. That is, the output data of butterflies are written back 

to their original location during the computation time. 

Moreover, for the I/O data, the new input data x[n] would be 

put in the location of the output data X[n] of the previous 

FFT symbol. On the other hand, for the memory-based 

processor, the high-radix structure would be taken to 

increase the throughput to meet real-time requirements. 

In this brief, mixed-radix FFT is proposed to 

optimize the memory-based FFT processor design. It 

supports not only in-place policy to minimize the necessary 

memory size for both butterflies output and I/O data but also 

multibank memory structure to increase its maximum 

throughput to satisfy more system applications without 

memory conflict. After the algorithm is introduced, we take 

the 16 -point FFT as an illustrative example. Finally, a low-

complexity hardware implementation of an index vector 

generator is also proposed for our algorithm. 

 

 2. DESCRIPTION OF FAST FOURIER 

TRANSFORM 

 A fast Fourier transform (FFT) is an 

efficient algorithm to compute the discrete Fourier transform 

(DFT) and its inverse. There are many distinct FFT 

algorithms involving a wide range of mathematics, from 
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simple complex-number arithmetic to group theory and 

number theory; this article gives an overview of the 

available techniques and some of their general properties of 

the FFT. 

        The fast Fourier transform (FFT) is simply a class of 

special algorithms which implement the discrete Fourier 

transform with considerable savings in computational time. 

It must be pointed out that the FFT is not a different 

transform from the DFT, but rather just a means of 

computing the DFT with a considerable reduction in the 

number of calculations required.  

      Since this tutorial is intended as an introduction to the 

Fourier transform, a rigourous development of the 

underlying theory of the FFT will not be attempted here.               

While it is possible to develop FFT algorithms that work 

with any number of points, maximum efficiency of 

computation is obtained by constraining the number of time 

points to be an integer power of two, e.g. 1024 or 2048.  

A DFT decomposes a sequence of values into components 

of different frequencies. This operation is useful in many 

fields (see discrete Fourier transform for properties and 

applications of the transform) but computing it directly from 

the definition is often too slow to be practical. An FFT is a 

way to compute the same result more quickly: computing a 

DFT of N points in the naive way, using the definition, takes 

O(N
2
) arithmetical operations, while an FFT can compute 

the same result in only O(N log N) operations. The 

difference in speed can be substantial, especially for long 

data sets where N may be in the thousands or millions—in 

practice, the computation time can be reduced by several 

orders of magnitude in such cases, and the improvement is 

roughly proportional to N / log(N). This huge improvement 

made many DFT-based algorithms practical; FFTs are of 

great importance to a wide variety of applications, from 

digital signal processing and solving partial differential 

equations to algorithms for quick multiplication of large 

integers. 

         The most well known FFT algorithms depend upon the 

factorization of N, but there are FFTs with O(N log N) 

complexity for all N, even for prime N. Many FFT 

algorithms only depend on the fact that is an Nth 

primitive root of unity, and thus can be applied to analogous 

transforms over any finite field, such as number-theoretic 

transforms. Since the inverse DFT is the same as the DFT, 

but with the opposite sign in the exponent and a 1/N factor, 

any FFT algorithm can easily be adapted for it. 

 

2.1 Applications of FFT 

             An FFT computes the DFT and produces exactly the 

same result as evaluating the DFT definition directly; the 

only difference is that an FFT is much faster. (In the 

presence of round-off error, many FFT algorithms are also 

much more accurate than evaluating the DFT definition 

directly, as discussed below.) 

Let x0, ...., xN-1 be complex numbers. The DFT is defined by 

the formula 

 
            Evaluating this definition directly requires O(N

2
) 

operations: there are N outputs Xk, and each output requires 

a sum of N terms. An FFT is any method to compute the 

same results in O(N log N) operations. More precisely, all 

known FFT algorithms require Θ(N log N) operations 

(technically, O only denotes an upper bound), although there 

is no known proof that better complexity is impossible. 

To illustrate the savings of an FFT, consider the count of 

complex multiplications and additions. Evaluating the DFT's 

sums directly involves N
2
 complex multiplications and 

N(N − 1) complex additions [of which O(N) operations can 

be saved by eliminating trivial operations such as 

multiplications by 1]. The well-known radix-2 Cooley–

Tukey algorithm, for N a power of 2, can compute the same 

result with only (N/2) log2 N complex multiplies (again, 

ignoring simplifications of multiplications by 1 and similar) 

and N log2N complex additions. In practice, actual 

performance on modern computers is usually dominated by 

factors other than arithmetic and is a complicated subject 

(see, e.g., Frigo & Johnson, 2005), but the overall 

improvement from O(N
2
) to O(N log N) remains constant. 

 

2.2 Cooley–Tukey algorithm Cooley–Tukey algorithm: 

              The most common FFT is the Cooley–Tukey 

algorithm. This is a divide and conquer algorithm that 

recursively breaks down a DFT of any composite size N = 

N1N2 into many smaller DFTs of sizes N1 and N2, along with 

O(N) multiplications by complex roots of unity traditionally 

called twiddle factors (after Gentleman and Sande, 1966). 

              This method (and the general idea of an FFT) was 

popularized by a publication of J. W. Cooley and J. W. 

Tukey in 1965, but it was later discovered (Heideman & 

Burrus, 1984) that those two authors had independently re-

invented an algorithm known to Carl Friedrich Gauss 

around 1805 (and subsequently rediscovered several times 

in limited forms). 

             The most well-known use of the Cooley–Tukey 

algorithm is to divide the transform into two pieces of  size 

N / 2 at each step, and is therefore limited to power-of-two 

sizes, but any factorization can be used in general (as was 

known to both Gauss and Cooley/Tukey). These are called 

the radix-2 and mixed-radix cases, respectively (and other 

variants such as the split-radix FFT have their own names as 

well). Although the basic idea is recursive, most traditional 

implementations rearrange the algorithm to avoid explicit 

recursion. Also, because the Cooley–Tukey algorithm 

breaks the DFT into smaller DFTs, it can be combined 

arbitrarily with any other algorithm for the DFT. 
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2.3 Another types of FFT algorithms 

             There are other FFT algorithms distinct from 

Cooley–Tukey. For N = N1N2 with coprime N1 and N2, one 

can use the Prime-Factor (Good-Thomas) algorithm (PFA), 

based on the Chinese Remainder Theorem, to factorize the 

DFT similarly to Cooley–Tukey but without the twiddle 

factors. The Rader-Brenner algorithm (1976) is a Cooley–

Tukey-like factorization but with purely imaginary twiddle 

factors, reducing multiplications at the cost of increased 

additions and reduced numerical stability; it was later 

superseded by the split-radix variant of Cooley–Tukey 

(which achieves the same multiplication count but with 

fewer additions and without sacrificing accuracy). 

Algorithms that recursively factorize the DFT into smaller 

operations other than DFTs include the Bruun and QFT 

algorithms. (The Rader-Brenner and QFT algorithms were 

proposed for power-of-two sizes, but it is possible that they 

could be adapted to general composite n. Bruun's algorithm 

applies to arbitrary even composite sizes.) Bruun's 

algorithm, in particular, is based on interpreting the FFT as a 

recursive factorization of the polynomial z
N
 − 1, here into 

real-coefficient polynomials of the form z
M

 − 1 and z
2M

 + 

az
M

 + 1. 

             Another polynomial viewpoint is exploited by the 

Winograd algorithm, which factorizes z
N
 − 1 into cyclotomic 

polynomials—these often have coefficients of 1, 0, or −1, 

and therefore require few (if any) multiplications, so 

Winograd can be used to obtain minimal-multiplication 

FFTs and is often used to find efficient algorithms for small 

factors. Indeed, Winograd showed that the DFT can be 

computed with only O(N) irrational multiplications, leading 

to a proven achievable lower bound on the number of 

multiplications for power-of-two sizes; unfortunately, this 

comes at the cost of many more additions, a tradeoff no 

longer favorable on modern processors with hardware 

multipliers. In particular, Winograd also makes use of the 

PFA as well as an algorithm by Rader for FFTs of prime 

sizes. 

 

2.4 FFT algorithms specialized for real and/or 

symmetric data 

             In many applications, the input data for the DFT are 

purely real, in which case the outputs satisfy the symmetry 

 
and efficient FFT algorithms have been designed for this 

situation (see e.g. Sorensen, 1987). One approach consists of 

taking an ordinary algorithm (e.g. Cooley–Tukey) and 

removing the redundant parts of the computation, saving 

roughly a factor of two in time and memory. Alternatively, 

it is possible to express an even-length real-input DFT as a 

complex DFT of half the length (whose real and imaginary 

parts are the even/odd elements of the original real data), 

followed by O(N) post-processing operations. 

            It was once believed that real-input DFTs could be 

more efficiently computed by means of the discrete Hartley 

transform (DHT), but it was subsequently argued that a 

specialized real-input DFT algorithm (FFT) can typically be 

found that requires fewer operations than the corresponding 

DHT algorithm (FHT) for the same number of inputs. 

Braun’s algorithm (above) is another method that was 

initially proposed to take advantage of real inputs, but it has 

not proved popular. 

. 

  3. PROPOSED MIXED RADIX FFT 

3.1 Radix_2 FFT Calculator: 

 

               As shown in figure the Clk, Reset, 16-samples and 

the twiddle factors are the inputs and 16-outputs samples are 

the outputs . Each and every sample is represented by using 

the 9-bits of information. The 8-bits are for the information 

and 1-bit is used for the sign bit representation. 

              The number of samples is 16, since the four stages 

of complex butterfly multiplications are required. For the 

each and every stage requires the different twiddle factors 

.The required twiddle factors are delivered by using  LUT 

table. After the fourth stage calculation we can get the 16-

samples outputs with real and imaginary parts.  

 

       

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

 Figure 3.1 Block diagram of Radix_2 FFT 

3.2 Radix_4 Complex Butterfly:   

   As shown in the below AR [8:0], AI [8:0], BR 

[8:0], BI [8:0], CR [8:0], CI [8:0], DR [8:0], DI [8:0], WAR 

[8:0], WAI [8:0], WBR [8:0], WBI [8:0], WCR [8:0], WCI 

[8:0], WDR [8:0], WDI [8:0] are the inputs of 9-bits and 

A_REAL [8:0], A_IMG [8:0], B_REAL [8:0], B_IMG 

[8:0], C_REAL [8:0], C_IMG [8:0], D_REAL [8:0], 

D_IMG [8:0] are the outputs of 9-bits. 
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            The first operation in this module is calculate the 

complex multiplications of respective twiddle factors like 

AR [8:0], AI [8:0] with WAR [8:0], WAI [8:0]. In the 

second operation we can calculate the A_REAL [8:0], 

A_IMG [8:0], B_REAL [8:0], B_IMG [8:0], C_REAL [8:0], 

C_IMG [8:0], D_REAL [8:0], D_IMG [8:0] by using the 

following equations 

A_REAL =ar+(crxwr-cixwi)+(brwr-biwi)+drwr-diwi)  --   1. 

A_IMG=ai+(crwi+ciwr)+(brwi+biwr)+(crwi+ciwr)+(drwi+

diwr) -----2. 

B_REAL =ar-(crwr-ciwi)+(brwi+biwr)-(drwi+diwr) -- 3. 

B_REAL =ai-(crwi+ciwr)-(brwr-biwi)+(drwr-diwi)  -- 4. 

C_REAL =ar+(crwr-ciwi)-(brwr-biwi)-(drwr-diwi)  -- 5. 

C_IMG= ai+(crwr+ciwi)-(brwi+biwr)-(drwi+diwr) --   6. 

D_REAL=ar-(crwr-ciwi)-(brwi+biwr)+(drwi+diwr) --  7. 

D_IMG=ai-(crwi+ciwr)+(brwr-biwi)-(drwr-diwi)  --    8 

  As shown in below figure 3. 2the Clk, Reset, 16-

samples and the twiddle factors are the inputs and 16-output 

samples are outputs. Each and every sample is represented 

by using the 9-bits of information. The 8-bits are for the 

information and 1-bit is used for the sign bit representation. 

The number of samples is 16, since the two stages of 

complex radix-4 butterfly multiplications are required. For 

the each and every stage requires the different twiddle 

factors .The required twiddle factors are delivered by using  

LUT table. After the fourth stage calculation we can get the 

16-samples outputs with real and imaginary parts.  

 

 

 

 

 

 

 

 

Figure 3.2 Block diagram of Radix-4 16 point FFT 

Calculator 

3.3 Controller:     

                                                                                                                                                                                                  

As shown in the below figure 3.3Clk, Reset and cntrl [1:0] 

are the inputs and Radix_2_ena , Radix_4_ena are the 

outputs. Every positive Clk edge the Radix_2_ena, 

Radix_4_ena are enabled or disabled depending the cntrl 

[1:0] bits. If cntrl value is “00” Radix_2_ena, Radix_4_ena 

both are disabled, if “01” Radix_2_ena is enable and 

Radix_4_ena is disable, if “10” Radix_2_ena is disable and 

Radix_4_ena is enable, if “11” both are activated. 

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

 Figure 3. 3 Block diagram of controller 

       

     3.4 Top Module:    
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 Figure 3.4 Block diagram of Top module 
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As shown in the  figure 3.4, Clk, Reset, cntrl [1:0] 

and 16_input samples are inputs. Each and every sample is 

represented as a real part of 9-bits and 9-bits of imaginary 

bits. This is synchronized design with active low Reset 

value.  Radix-2 of  16-output samples and Radix_4 of 16-

outputs samples are the outputs. When ever the Reset is high 

the both outputs should be in zero value. Depending on the 

cntrl value we can get either Radix_2 output samples or 

Radix_4 output samples and both samples are active state 

when cntrl input value is “11”. 

4. RESULTS 

4.1 simulation waveform for controller 

 

4.2 simulation waveform for top module 

 

5. CONCLUSION 

         In this brief, a mixed radix FFT has been proposed to 

optimize the general-size memory-based FFT processor 

design. It supports the in-place policy for both butterflies 

output and I/O data to minimize the necessary memory size. 

Hence, only 2N words memory is required for any size FFT 

computation for real-time requirements. Furthermore, our 

proposal also supports the multibank addressing for a high-

radix structure without memory conflict by reversing the 

decomposition order of the previous FFT symbol. Finally, a 

low complexity index vector generator has been proposed 

for our algorithm. It only costs a few accumulators, making 

our proposal very suitable for multistandard and multimode 

OFDMbased applications. 

 

6. FUTURE WORK 

 

    This is a novel architecture for any Radix-N of FFT 

calculation method. It is scalable architecture for any 

number samples like 32,64,128,256,1024 also. This suitable 

for different OFDM application with little bit of hardware 

modification. 

 

7. ACKNOWLEDGEMENT 

 

      I am extremely pleased to present myself this 

dissertation after getting innumerable movements and hard 

time with a never-ending coordination. I sincerely 

acknowledge offering my words of thanks to our beloved 

and respected guide Dr.Y.Padma Sai Professor, Dr.Y.Padma 

Sai Head of the deportment and Dr.Y.Padma Sai VLSI 

coordinator who is a constant source of inspiration and 

encouragement. I sincerely acknowledge offering my words 

of thanks to my beloved and respected parents for their 

constant support and encouragement.. 

 

8. REFERENCES 

[1]  L. G. Johnson, “Conflict free memory addressing for 

dedicated FFT hardware,” IEEE Trans. Circuits Syst. II, 

Analog Digit. Signal Process. vol. 39, no. 5, pp. 312–316, 

May 1992. 

[2]  J. A. Hidalgo, J. Lopez, F. Arguello, and E. L. Zapata, 

“Area-efficient architecture for fast Fourier transform,” 

IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., 

vol. 46, no. 2, pp. 187–193, Feb. 1999. 

[3]  B. G. Jo and M. H. Sunwoo, “New continuous-flow 

mixed-radix (CFMR) FFT processor using novel in-place 

strategy,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, 

no. 5, pp. 911–919, May 2005. 

[4]  Z.-X. Yang, Y.-P. Hu, C.-Y. Pan, and L. Yang, “Design 

of a 3780-point IFFT processor for TDS-OFDM,” IEEE 

Trans. Broadcast., vol. 48, no. 1, pp. 57–61, Mar. 2002. 

[5]  3GPP TS 36.201 V8.3.0 LTE Physical Layer—General 

Description, E-UTRA, Mar. 2009. 

[6]  C. Burrus, “Index mappings for multidimensional 

formulation of the DFT and convolution,” IEEE Trans. 

Acoust., Speech, Signal Process., vol. ASSP-25, no. 3, pp. 

239–242, Jun. 1977. 

[7]  D. P. Kolba and T. W. Parks, “A prime factor FFT 

algorithm using high-speed convolution,” IEEE Trans. 

Acoust., Speech, Signal Process., vol. ASSP-25, no. 4, pp. 

281–294, Aug. 1977. 



International Journal of Scientific & Engineering Research, Volume 3, Issue 11, November-2012                                                      6 
ISSN 2229-5518 
 

IJSER © 2012 

http://www.ijser.org 

 

[8]  A. M. Despain, “Very fast Fourier transform algorithms  

hardware for implementation,” IEEE Trans. Comput., vol. 

C-28, no. 5, pp. 333–341,\ May 1979. 

[9] C. L. Wey, S.-Y. Lin, and W. C. Tang, “Efficient 

memory-based FFT processors for OFDM applications,” in 

Proc. IEEE Electro/Inf. Technol., May 17–20, 2007, pp. 

345–350. 

[10]  Jaguar II Variable-Point (8-1024) FFT/IFFT, Drey 

Enterprise Inc., Crosslake, MN, 1998. 

[11]  R. Radhouane, P. Liu, and C. Modlin, “Minimizing the 

memory requirement for continuous flow FFT 

implementation: Continuous flow mixed mode FFT 

(CFMM-FFT),” in Proc. IEEE Int. Symp. Circuits Syst., 

May 2000, vol. 1, pp. 116–119. 

[12]  Y. Ma, “An effective memory addressing scheme for 

FFT processors,” IEEE Trans. Signal Process., vol. 47, no. 

3, pp. 907–911, May 1999. 

[13]  D. Reisis and N. Vlassopoulos, “Address generation 

techniques for conflict free parallel memory addressing in 

FFT architectures,” IEEE Trans. Circuits Syst. I, Reg. 

Papers, vol. 55, no. 11, pp. 3438–3447, Dec. 2008.  

    Y. PadmaSai obtained her B.Tech. 

Degree from Nagarjuna University, Guntur in 1989, and 

M.E in Systems and Signal Processing from Osmania 

University, Hyderabad in 1998. Obtained PhD in Electronics 

and Communication Engineering, from Osmania University, 

Hyderabad in 2009. She Started carrier as Quality Control 

Engineer and served for 5 years in M/S. Suchitra Electronics 

Pvt. Ltd. Hyderabad, from Feb 1991 to May 1996. Lecturer 

in the Department of ECE in Deccan College of Engineering 

and Tech, Hyderabad served for one year, from Jan 1998 to 

Dec 1998. Lecturer in the Department of ECE VNRVJIET 

from July 1999 to 10th November 2000. Associate Professor 

in the department of ECE VNRVJIET from 11
th

 November 

2000 to till date. Elevated as professor in the same 

Department on 21
st
 August 2009.  She has taken charge of 

Head of the Department on 3
rd

 Sep.2012. She is a member 

of ISTE and Fellow of IETE.  She presented 17 research 

papers in National and International Conferences/Journals.  

Her areas of research interest are Bio-Medical, Signal and 

Image Processing. 

 

 

 

. Y.Swetha Sree received her B.Tech. 

Degree in electronics and communication engineering from 

MRRIT Institute of Engineering and Technology , affiliated 

to JNTU University Hyderabad, ,AP, India, in 2008, is 

pursuing the M.Tech in VLSI System Design at VNR 

Vignana Jyothi Institute of Engineering & Technology, 

Bachupally, Hyderabad, India. Her research interests include 

VLSI Chip Design (ASIC), Digital Design (FPGA). 

 

 

 

 

 

 

 

http://start.speedbit.com/r.aspx?u=http://www.jntu.ac.in/

