
International Journal of Scientific & Engineering Research, Volume 3, Issue 11, November-2012 1
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Design and Implementation of VLSI Architecture for

Mixed Radix FFT

Dr.Y.Padma Sai*, Y.Swetha Sree*

*
(Department of ECE, VNR VJIET, Hyderabad, AP, INDIA

Email: ypadmasai@gmail.com)
*
(Department of ECE, VNR VJIET, Hyderabad, AP, INDIA

Email: swethasree.ece@gmail.com)

ABSTRACT

The main objective of this paper is to design and

implement the VLSI architecture for Mixed Radix FFT.

This architecture is proposed for memory based Fast

Fourier transform (FFT) to support less memory size

and area reduction .The pipelined architecture would

cost more area and power than memory based

architecture.

Index terms: Continuous data flow, Radix-2 Fast Fourier

transform, Radix-4 Fast Fourier transform, mixed radix

FFT.

 1. INTRODUCTION

 Digital signal processing is one of the core

technologies, in rapidly growing application areas, such as

wireless communications, audio and video processing and

industrial control.. DSP has become a key component, in

many of the consumer, communications, medical and

industrial products which implement the signal processing

using microprocessors, Field Programmable Gate Arrays

(FPGAs), Custom ICs etc.

 DSP techniques have been very successful because of

the development of low-cost software and hardware support.

For example, modems and speech recognition can be less

expensive using DSP techniques. DSP processors are

concerned primarily with real-time signal processing.

 Fast Fourier transform (FFT) has an important role in

many digital signal processing (DSP) systems. E.g., in

orthogonal frequency division multiplexing (OFMD)

communication systems, FFT and inverse FFT are needed.

The OFMD technique has become a widely adopted in

several wireless communication standards.

 Today, various FFT processors, such as pipelined or

memory-based architectures, have been proposed for

different applications. However, for long-size FFT

processors, such as the 2048-point FFT, the pipelined

architecture would cost more area and power than the

memory-based design. Hence, memory based approach has

gained more and more attention recently in FFT processor

designs for long-size DFT applications.

 For the memory-based processor design, minimizing

the necessary memory size is effective for area reduction

since the memory costs a significant part of the processor.

On the other hand, the FFT processor usually adopts on-chip

static random access memory (SRAM) instead of external

memory. The reason is the high-voltage I/O and the large

capacitance in the printer-circuit-board (PCB) trace would

increase power consumption for external memory.

 To minimize the necessary memory size, an in-

place approach is taken for both butterflies output and I/O

data. That is, the output data of butterflies are written back

to their original location during the computation time.

Moreover, for the I/O data, the new input data x[n] would be

put in the location of the output data X[n] of the previous

FFT symbol. On the other hand, for the memory-based

processor, the high-radix structure would be taken to

increase the throughput to meet real-time requirements.

In this brief, mixed-radix FFT is proposed to

optimize the memory-based FFT processor design. It

supports not only in-place policy to minimize the necessary

memory size for both butterflies output and I/O data but also

multibank memory structure to increase its maximum

throughput to satisfy more system applications without

memory conflict. After the algorithm is introduced, we take

the 16 -point FFT as an illustrative example. Finally, a low-

complexity hardware implementation of an index vector

generator is also proposed for our algorithm.

 2. DESCRIPTION OF FAST FOURIER

TRANSFORM

 A fast Fourier transform (FFT) is an

efficient algorithm to compute the discrete Fourier transform

(DFT) and its inverse. There are many distinct FFT

algorithms involving a wide range of mathematics, from

International Journal of Scientific & Engineering Research, Volume 3, Issue 11, November-2012 2
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

simple complex-number arithmetic to group theory and

number theory; this article gives an overview of the

available techniques and some of their general properties of

the FFT.

 The fast Fourier transform (FFT) is simply a class of

special algorithms which implement the discrete Fourier

transform with considerable savings in computational time.

It must be pointed out that the FFT is not a different

transform from the DFT, but rather just a means of

computing the DFT with a considerable reduction in the

number of calculations required.

 Since this tutorial is intended as an introduction to the

Fourier transform, a rigourous development of the

underlying theory of the FFT will not be attempted here.

While it is possible to develop FFT algorithms that work

with any number of points, maximum efficiency of

computation is obtained by constraining the number of time

points to be an integer power of two, e.g. 1024 or 2048.

A DFT decomposes a sequence of values into components

of different frequencies. This operation is useful in many

fields (see discrete Fourier transform for properties and

applications of the transform) but computing it directly from

the definition is often too slow to be practical. An FFT is a

way to compute the same result more quickly: computing a

DFT of N points in the naive way, using the definition, takes

O(N
2
) arithmetical operations, while an FFT can compute

the same result in only O(N log N) operations. The

difference in speed can be substantial, especially for long

data sets where N may be in the thousands or millions—in

practice, the computation time can be reduced by several

orders of magnitude in such cases, and the improvement is

roughly proportional to N / log(N). This huge improvement

made many DFT-based algorithms practical; FFTs are of

great importance to a wide variety of applications, from

digital signal processing and solving partial differential

equations to algorithms for quick multiplication of large

integers.

 The most well known FFT algorithms depend upon the

factorization of N, but there are FFTs with O(N log N)

complexity for all N, even for prime N. Many FFT

algorithms only depend on the fact that is an Nth

primitive root of unity, and thus can be applied to analogous

transforms over any finite field, such as number-theoretic

transforms. Since the inverse DFT is the same as the DFT,

but with the opposite sign in the exponent and a 1/N factor,

any FFT algorithm can easily be adapted for it.

2.1 Applications of FFT

 An FFT computes the DFT and produces exactly the

same result as evaluating the DFT definition directly; the

only difference is that an FFT is much faster. (In the

presence of round-off error, many FFT algorithms are also

much more accurate than evaluating the DFT definition

directly, as discussed below.)

Let x0,, xN-1 be complex numbers. The DFT is defined by

the formula

 Evaluating this definition directly requires O(N

2
)

operations: there are N outputs Xk, and each output requires

a sum of N terms. An FFT is any method to compute the

same results in O(N log N) operations. More precisely, all

known FFT algorithms require Θ(N log N) operations

(technically, O only denotes an upper bound), although there

is no known proof that better complexity is impossible.

To illustrate the savings of an FFT, consider the count of

complex multiplications and additions. Evaluating the DFT's

sums directly involves N
2
 complex multiplications and

N(N − 1) complex additions [of which O(N) operations can

be saved by eliminating trivial operations such as

multiplications by 1]. The well-known radix-2 Cooley–

Tukey algorithm, for N a power of 2, can compute the same

result with only (N/2) log2 N complex multiplies (again,

ignoring simplifications of multiplications by 1 and similar)

and N log2N complex additions. In practice, actual

performance on modern computers is usually dominated by

factors other than arithmetic and is a complicated subject

(see, e.g., Frigo & Johnson, 2005), but the overall

improvement from O(N
2
) to O(N log N) remains constant.

2.2 Cooley–Tukey algorithm Cooley–Tukey algorithm:

 The most common FFT is the Cooley–Tukey

algorithm. This is a divide and conquer algorithm that

recursively breaks down a DFT of any composite size N =

N1N2 into many smaller DFTs of sizes N1 and N2, along with

O(N) multiplications by complex roots of unity traditionally

called twiddle factors (after Gentleman and Sande, 1966).

 This method (and the general idea of an FFT) was

popularized by a publication of J. W. Cooley and J. W.

Tukey in 1965, but it was later discovered (Heideman &

Burrus, 1984) that those two authors had independently re-

invented an algorithm known to Carl Friedrich Gauss

around 1805 (and subsequently rediscovered several times

in limited forms).

 The most well-known use of the Cooley–Tukey

algorithm is to divide the transform into two pieces of size

N / 2 at each step, and is therefore limited to power-of-two

sizes, but any factorization can be used in general (as was

known to both Gauss and Cooley/Tukey). These are called

the radix-2 and mixed-radix cases, respectively (and other

variants such as the split-radix FFT have their own names as

well). Although the basic idea is recursive, most traditional

implementations rearrange the algorithm to avoid explicit

recursion. Also, because the Cooley–Tukey algorithm

breaks the DFT into smaller DFTs, it can be combined

arbitrarily with any other algorithm for the DFT.

International Journal of Scientific & Engineering Research, Volume 3, Issue 11, November-2012 3
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

2.3 Another types of FFT algorithms

 There are other FFT algorithms distinct from

Cooley–Tukey. For N = N1N2 with coprime N1 and N2, one

can use the Prime-Factor (Good-Thomas) algorithm (PFA),

based on the Chinese Remainder Theorem, to factorize the

DFT similarly to Cooley–Tukey but without the twiddle

factors. The Rader-Brenner algorithm (1976) is a Cooley–

Tukey-like factorization but with purely imaginary twiddle

factors, reducing multiplications at the cost of increased

additions and reduced numerical stability; it was later

superseded by the split-radix variant of Cooley–Tukey

(which achieves the same multiplication count but with

fewer additions and without sacrificing accuracy).

Algorithms that recursively factorize the DFT into smaller

operations other than DFTs include the Bruun and QFT

algorithms. (The Rader-Brenner and QFT algorithms were

proposed for power-of-two sizes, but it is possible that they

could be adapted to general composite n. Bruun's algorithm

applies to arbitrary even composite sizes.) Bruun's

algorithm, in particular, is based on interpreting the FFT as a

recursive factorization of the polynomial z
N
 − 1, here into

real-coefficient polynomials of the form z
M

 − 1 and z
2M

 +

az
M

 + 1.

 Another polynomial viewpoint is exploited by the

Winograd algorithm, which factorizes z
N
 − 1 into cyclotomic

polynomials—these often have coefficients of 1, 0, or −1,

and therefore require few (if any) multiplications, so

Winograd can be used to obtain minimal-multiplication

FFTs and is often used to find efficient algorithms for small

factors. Indeed, Winograd showed that the DFT can be

computed with only O(N) irrational multiplications, leading

to a proven achievable lower bound on the number of

multiplications for power-of-two sizes; unfortunately, this

comes at the cost of many more additions, a tradeoff no

longer favorable on modern processors with hardware

multipliers. In particular, Winograd also makes use of the

PFA as well as an algorithm by Rader for FFTs of prime

sizes.

2.4 FFT algorithms specialized for real and/or

symmetric data

 In many applications, the input data for the DFT are

purely real, in which case the outputs satisfy the symmetry

and efficient FFT algorithms have been designed for this

situation (see e.g. Sorensen, 1987). One approach consists of

taking an ordinary algorithm (e.g. Cooley–Tukey) and

removing the redundant parts of the computation, saving

roughly a factor of two in time and memory. Alternatively,

it is possible to express an even-length real-input DFT as a

complex DFT of half the length (whose real and imaginary

parts are the even/odd elements of the original real data),

followed by O(N) post-processing operations.

 It was once believed that real-input DFTs could be

more efficiently computed by means of the discrete Hartley

transform (DHT), but it was subsequently argued that a

specialized real-input DFT algorithm (FFT) can typically be

found that requires fewer operations than the corresponding

DHT algorithm (FHT) for the same number of inputs.

Braun’s algorithm (above) is another method that was

initially proposed to take advantage of real inputs, but it has

not proved popular.

.

 3. PROPOSED MIXED RADIX FFT

3.1 Radix_2 FFT Calculator:

 As shown in figure the Clk, Reset, 16-samples and

the twiddle factors are the inputs and 16-outputs samples are

the outputs . Each and every sample is represented by using

the 9-bits of information. The 8-bits are for the information

and 1-bit is used for the sign bit representation.

 The number of samples is 16, since the four stages

of complex butterfly multiplications are required. For the

each and every stage requires the different twiddle factors

.The required twiddle factors are delivered by using LUT

table. After the fourth stage calculation we can get the 16-

samples outputs with real and imaginary parts.

 Figure 3.1 Block diagram of Radix_2 FFT

3.2 Radix_4 Complex Butterfly:

 As shown in the below AR [8:0], AI [8:0], BR

[8:0], BI [8:0], CR [8:0], CI [8:0], DR [8:0], DI [8:0], WAR

[8:0], WAI [8:0], WBR [8:0], WBI [8:0], WCR [8:0], WCI

[8:0], WDR [8:0], WDI [8:0] are the inputs of 9-bits and

A_REAL [8:0], A_IMG [8:0], B_REAL [8:0], B_IMG

[8:0], C_REAL [8:0], C_IMG [8:0], D_REAL [8:0],

D_IMG [8:0] are the outputs of 9-bits.

16 output

samples

Clk

 16-

samples .

.

.

Reset

Twiddle factors

from LUT

.

.

.

16-output

samples

RADIX-2

FFT -16

calculator

CALCULAT

OR

International Journal of Scientific & Engineering Research, Volume 3, Issue 11, November-2012 4
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

 The first operation in this module is calculate the

complex multiplications of respective twiddle factors like

AR [8:0], AI [8:0] with WAR [8:0], WAI [8:0]. In the

second operation we can calculate the A_REAL [8:0],

A_IMG [8:0], B_REAL [8:0], B_IMG [8:0], C_REAL [8:0],

C_IMG [8:0], D_REAL [8:0], D_IMG [8:0] by using the

following equations

A_REAL =ar+(crxwr-cixwi)+(brwr-biwi)+drwr-diwi) -- 1.

A_IMG=ai+(crwi+ciwr)+(brwi+biwr)+(crwi+ciwr)+(drwi+

diwr) -----2.

B_REAL =ar-(crwr-ciwi)+(brwi+biwr)-(drwi+diwr) -- 3.

B_REAL =ai-(crwi+ciwr)-(brwr-biwi)+(drwr-diwi) -- 4.

C_REAL =ar+(crwr-ciwi)-(brwr-biwi)-(drwr-diwi) -- 5.

C_IMG= ai+(crwr+ciwi)-(brwi+biwr)-(drwi+diwr) -- 6.

D_REAL=ar-(crwr-ciwi)-(brwi+biwr)+(drwi+diwr) -- 7.

D_IMG=ai-(crwi+ciwr)+(brwr-biwi)-(drwr-diwi) -- 8

 As shown in below figure 3. 2the Clk, Reset, 16-

samples and the twiddle factors are the inputs and 16-output

samples are outputs. Each and every sample is represented

by using the 9-bits of information. The 8-bits are for the

information and 1-bit is used for the sign bit representation.

The number of samples is 16, since the two stages of

complex radix-4 butterfly multiplications are required. For

the each and every stage requires the different twiddle

factors .The required twiddle factors are delivered by using

LUT table. After the fourth stage calculation we can get the

16-samples outputs with real and imaginary parts.

Figure 3.2 Block diagram of Radix-4 16 point FFT

Calculator

3.3 Controller:

As shown in the below figure 3.3Clk, Reset and cntrl [1:0]

are the inputs and Radix_2_ena , Radix_4_ena are the

outputs. Every positive Clk edge the Radix_2_ena,

Radix_4_ena are enabled or disabled depending the cntrl

[1:0] bits. If cntrl value is “00” Radix_2_ena, Radix_4_ena

both are disabled, if “01” Radix_2_ena is enable and

Radix_4_ena is disable, if “10” Radix_2_ena is disable and

Radix_4_ena is enable, if “11” both are activated.

 Figure 3. 3 Block diagram of controller

 3.4 Top Module:

 Cntrl [1:0]

 Figure 3.4 Block diagram of Top module

Clk

Reset

 16-samples

Twiddle

factors

from LUT

.

.

.

.

.

.

16-output

samples

Radix-4

16 Point FFT

Calculator

Clk

Reset

cntrl

[1:0]

Radix_2_ena

Radix_4_ena

Controller

 Radix_4

FFT_16

CALCULATO

rrrrR

 Radix_2

FFT_16

CALCULATOR

.

.

.

CONTROLLER

Clk

Reset

16 samples

.

.

.

.

.

.

Radix_2

Output

samples

Radix_4

Output

samples

Radix-

4 FFT

Radix-

2 FFT

International Journal of Scientific & Engineering Research, Volume 3, Issue 11, November-2012 5
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

As shown in the figure 3.4, Clk, Reset, cntrl [1:0]

and 16_input samples are inputs. Each and every sample is

represented as a real part of 9-bits and 9-bits of imaginary

bits. This is synchronized design with active low Reset

value. Radix-2 of 16-output samples and Radix_4 of 16-

outputs samples are the outputs. When ever the Reset is high

the both outputs should be in zero value. Depending on the

cntrl value we can get either Radix_2 output samples or

Radix_4 output samples and both samples are active state

when cntrl input value is “11”.

4. RESULTS

4.1 simulation waveform for controller

4.2 simulation waveform for top module

5. CONCLUSION

 In this brief, a mixed radix FFT has been proposed to

optimize the general-size memory-based FFT processor

design. It supports the in-place policy for both butterflies

output and I/O data to minimize the necessary memory size.

Hence, only 2N words memory is required for any size FFT

computation for real-time requirements. Furthermore, our

proposal also supports the multibank addressing for a high-

radix structure without memory conflict by reversing the

decomposition order of the previous FFT symbol. Finally, a

low complexity index vector generator has been proposed

for our algorithm. It only costs a few accumulators, making

our proposal very suitable for multistandard and multimode

OFDMbased applications.

6. FUTURE WORK

 This is a novel architecture for any Radix-N of FFT

calculation method. It is scalable architecture for any

number samples like 32,64,128,256,1024 also. This suitable

for different OFDM application with little bit of hardware

modification.

7. ACKNOWLEDGEMENT

 I am extremely pleased to present myself this

dissertation after getting innumerable movements and hard

time with a never-ending coordination. I sincerely

acknowledge offering my words of thanks to our beloved

and respected guide Dr.Y.Padma Sai Professor, Dr.Y.Padma

Sai Head of the deportment and Dr.Y.Padma Sai VLSI

coordinator who is a constant source of inspiration and

encouragement. I sincerely acknowledge offering my words

of thanks to my beloved and respected parents for their

constant support and encouragement..

8. REFERENCES

[1] L. G. Johnson, “Conflict free memory addressing for

dedicated FFT hardware,” IEEE Trans. Circuits Syst. II,

Analog Digit. Signal Process. vol. 39, no. 5, pp. 312–316,

May 1992.

[2] J. A. Hidalgo, J. Lopez, F. Arguello, and E. L. Zapata,

“Area-efficient architecture for fast Fourier transform,”

IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process.,

vol. 46, no. 2, pp. 187–193, Feb. 1999.

[3] B. G. Jo and M. H. Sunwoo, “New continuous-flow

mixed-radix (CFMR) FFT processor using novel in-place

strategy,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52,

no. 5, pp. 911–919, May 2005.

[4] Z.-X. Yang, Y.-P. Hu, C.-Y. Pan, and L. Yang, “Design

of a 3780-point IFFT processor for TDS-OFDM,” IEEE

Trans. Broadcast., vol. 48, no. 1, pp. 57–61, Mar. 2002.

[5] 3GPP TS 36.201 V8.3.0 LTE Physical Layer—General

Description, E-UTRA, Mar. 2009.

[6] C. Burrus, “Index mappings for multidimensional

formulation of the DFT and convolution,” IEEE Trans.

Acoust., Speech, Signal Process., vol. ASSP-25, no. 3, pp.

239–242, Jun. 1977.

[7] D. P. Kolba and T. W. Parks, “A prime factor FFT

algorithm using high-speed convolution,” IEEE Trans.

Acoust., Speech, Signal Process., vol. ASSP-25, no. 4, pp.

281–294, Aug. 1977.

International Journal of Scientific & Engineering Research, Volume 3, Issue 11, November-2012 6
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

[8] A. M. Despain, “Very fast Fourier transform algorithms

hardware for implementation,” IEEE Trans. Comput., vol.

C-28, no. 5, pp. 333–341,\ May 1979.

[9] C. L. Wey, S.-Y. Lin, and W. C. Tang, “Efficient

memory-based FFT processors for OFDM applications,” in

Proc. IEEE Electro/Inf. Technol., May 17–20, 2007, pp.

345–350.

[10] Jaguar II Variable-Point (8-1024) FFT/IFFT, Drey

Enterprise Inc., Crosslake, MN, 1998.

[11] R. Radhouane, P. Liu, and C. Modlin, “Minimizing the

memory requirement for continuous flow FFT

implementation: Continuous flow mixed mode FFT

(CFMM-FFT),” in Proc. IEEE Int. Symp. Circuits Syst.,

May 2000, vol. 1, pp. 116–119.

[12] Y. Ma, “An effective memory addressing scheme for

FFT processors,” IEEE Trans. Signal Process., vol. 47, no.

3, pp. 907–911, May 1999.

[13] D. Reisis and N. Vlassopoulos, “Address generation

techniques for conflict free parallel memory addressing in

FFT architectures,” IEEE Trans. Circuits Syst. I, Reg.

Papers, vol. 55, no. 11, pp. 3438–3447, Dec. 2008.

 Y. PadmaSai obtained her B.Tech.

Degree from Nagarjuna University, Guntur in 1989, and

M.E in Systems and Signal Processing from Osmania

University, Hyderabad in 1998. Obtained PhD in Electronics

and Communication Engineering, from Osmania University,

Hyderabad in 2009. She Started carrier as Quality Control

Engineer and served for 5 years in M/S. Suchitra Electronics

Pvt. Ltd. Hyderabad, from Feb 1991 to May 1996. Lecturer

in the Department of ECE in Deccan College of Engineering

and Tech, Hyderabad served for one year, from Jan 1998 to

Dec 1998. Lecturer in the Department of ECE VNRVJIET

from July 1999 to 10th November 2000. Associate Professor

in the department of ECE VNRVJIET from 11
th

 November

2000 to till date. Elevated as professor in the same

Department on 21
st
 August 2009. She has taken charge of

Head of the Department on 3
rd

 Sep.2012. She is a member

of ISTE and Fellow of IETE. She presented 17 research

papers in National and International Conferences/Journals.

Her areas of research interest are Bio-Medical, Signal and

Image Processing.

. Y.Swetha Sree received her B.Tech.

Degree in electronics and communication engineering from

MRRIT Institute of Engineering and Technology , affiliated

to JNTU University Hyderabad, ,AP, India, in 2008, is

pursuing the M.Tech in VLSI System Design at VNR

Vignana Jyothi Institute of Engineering & Technology,

Bachupally, Hyderabad, India. Her research interests include

VLSI Chip Design (ASIC), Digital Design (FPGA).

http://start.speedbit.com/r.aspx?u=http://www.jntu.ac.in/

